Quasi-Periodic Solutions of a Damped Nonlinear Quasi-Periodic Mathieu Equation by the Incremental Harmonic Balance Method With Two Time Scales

نویسندگان

چکیده

Abstract Quasi-periodic (QP) solutions of a damped nonlinear QP Mathieu equation with cubic nonlinearity are investigated by using the incremental harmonic balance (IHB) method two time scales. The contains incommensurate excitation frequencies, one is small frequency while other nearly equals twice linear natural frequency. It found that Fourier spectra consist uniformly spaced sidebands due to nonlinearity. IHB scales, which relates adopted trace solution curves in an automatical way and find all frequencies their corresponding amplitudes. Effects parametric studied detail. Based on approximation periodic large period, Floquet theory used study stability solutions. Three types can be obtained from method, agree very well results numerical integration. However, perturbation double-step multiple scales (MMS) obtains only type since ratio first reduced-modulation 1 second procedure, do not need ratio. Furthermore, MMS different those integration

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Solutions of the Duffing Harmonic Oscillator by He's Energy Balance Method

Duffing harmonic oscillator is a common model for nonlinear phenomena in science and engineering. This paper presents He´s Energy Balance Method (EBM) for solving nonlinear differential equations. Two strong nonlinear cases have been studied analytically. Analytical results of the EBM are compared with the solutions obtained by using He´s Frequency Amplitude Formulation (FAF) and numerical solu...

متن کامل

Quasi-periodic solutions in a nonlinear Schrödinger equation

In this paper, one-dimensional (1D) nonlinear Schrödinger equation iut − uxx +mu+ |u|4u= 0 with the periodic boundary condition is considered. It is proved that for each given constant potential m and each prescribed integer N > 1, the equation admits a Whitney smooth family of small amplitude, time quasi-periodic solutions with N Diophantine frequencies. The proof is based on a partial Birkhof...

متن کامل

Transition Curves for the Quasi-Periodic Mathieu Equation

In this work we investigate an extension of Mathieu’s equation, the quasi-periodic (QP) Mathieu equation given by ψ̈ + [δ + (cos t+ cosωt)]ψ = 0 for small and irrational ω. Of interest is the generation of stability diagrams that identify the points or regions in the δ-ω parameter plane (for fixed ) for which all solutions of the QP Mathieu equation are bounded. Numerical integration is employed...

متن کامل

Quasi-Periodic Solutions of Heun’s Equation

By exploiting a recently developed connection between Heun’s differential equation and the generalized associated Lamé equation, we not only recover the well known periodic solutions, but also obtain a large class of new, quasi-periodic solutions of Heun’s equation. Each of the quasi-periodic solutions is doubly degenerate.

متن کامل

Finite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures

Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mechanics

سال: 2022

ISSN: ['0021-8936', '1528-9036']

DOI: https://doi.org/10.1115/1.4055086